1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
use crate::types::{Type, TypeTrait, Typed, WithMetaData};
pub fn is_cyclomatic_persisted<K: TypeTrait>(t: &K) -> bool {
t.is_type_declaration() // TODO EnumConstant might not be appropriate here
|| t.is_executable_member()
|| t.is_file()
// || t == &Type::ClassDeclaration
// || t == &Type::InterfaceDeclaration
// || t == &Type::EnumDeclaration
// || t == &Type::AnnotationTypeDeclaration
// || t == &Type::MethodDeclaration
// || t == &Type::ConstructorDeclaration
// || t == &Type::Program
}
// TODO look at https://crates.io/crates/complexity
// and also https://github.com/jacoco/jacoco/blob/b68fe1a0a7fb86f12cda689ec473fd6633699b55/org.jacoco.doc/docroot/doc/counters.html#L102
/// An analysis which computes McCabe's cyclomatic complexity of any vertex
///
/// The McCabes complexity is calculated simply by counting all branching
/// statements + 1. This is not correct in the strictest sense of the original
/// conception of cyclomatic complexity or even McCabe's complexity (which can
/// only be computed this way on the machine code level) but this is what most
/// modern tools do.
/// From https://bitbucket.org/sealuzh/lisa/src/master/lisa-module/src/main/scala/ch/uzh/ifi/seal/lisa/module/analysis/object-oriented/MccAnalysis.scala
/// same POV https://github.com/qxo/eclipse-metrics-plugin/blob/08e51bd48725494aaa82023716ce659504948610/net.sourceforge.metrics/src/net/sourceforge/metrics/calculators/McCabe.java
#[derive(Clone, Debug)]
pub struct Mcc {
value: u32,
}
impl Mcc {
pub fn new<K: TypeTrait>(kind: &K) -> Self {
// TODO also consider || and && as forks
// we would need to check the operand ie. the children
Self {
value: if kind.is_fork() { 1 } else { 0 },
}
}
/// TODO reverse &mut and self
pub fn acc(self, acc: &mut Self) {
acc.value += self.value
}
pub fn persist<K: TypeTrait>(kind: &K) -> bool {
is_cyclomatic_persisted(kind)
}
// pub fn persist(&self, kind: &Type) -> Option<Self> {
// if is_cyclomatic_persisted(kind) {
// Some(Self {
// value: self.value + 1,
// })
// } else {
// None
// }
// }
}
impl<T: Typed + WithMetaData<Mcc>> MetaData<T> for Mcc
where
T::Type: TypeTrait,
{
type R = u32;
fn retrieve(node: &T) -> Self::R {
let kind = node.get_type();
if Mcc::persist(&kind) {
node.get_metadata()
.map(|x| x.value + 1)
.expect("missing mcc")
} else {
0
}
}
}
pub trait MetaData<T> {
type R;
fn retrieve(node: &T) -> Self::R;
}
/// considering https://github.com/jacoco/jacoco/blob/b68fe1a0a7fb86f12cda689ec473fd6633699b55/org.jacoco.doc/docroot/doc/counters.html#L102
///
/// v(G) = b - d + 1 where b is the number of branches and d the number of dessision points
struct MccJacoco {
value: u32,
}
/// v(G) = e - n + p
impl MccJacoco {
pub fn new(kind: &Type) -> Self {
Self {
value: if kind.is_fork() { 1 } else { 0 },
}
}
pub fn acc(self, kind: &Type, acc: &mut Self) {
todo!()
}
}
struct McCabe {
value: u32,
}
/// v(G) = e - n + p
impl McCabe {
pub fn new(kind: &Type) -> Self {
Self {
value: if kind.is_fork() { 1 } else { 0 },
}
}
pub fn acc(self, kind: &Type, acc: &mut Self) {
todo!()
}
}
#[cfg(test)]
pub mod tests {
// *v = e - n + 2p
// a -> b
// v = 1 - 2 + 2 = 1
// if x {a} else {b} ; c
// v = 4 - 4 + 2 = 2
// while x {a} ; b
// v = 3 - 3 + 2 = 2
// do {a} while x ; b
// v = 3 - 3 + 2 = 2
}